Sustainable Recommender Systems for Tourism

09 Oct 2025 • 38 min • EN
38 min
00:00
38:02
No file found

In this episode, we speak with Ashmi Banerjee, a doctoral candidate at the Technical University of Munich, about her pioneering research on AI-powered recommender systems in tourism. Ashmi illuminates how these systems can address exposure bias while promoting more sustainable tourism practices through innovative approaches to data acquisition and algorithm design.  Key highlights include leveraging large language models for synthetic data generation, developing recommendation architectures that balance user satisfaction with environmental concerns, and creating frameworks that distribute tourism more equitably across destinations. Ashmi's insights offer valuable perspectives for both AI researchers and tourism industry professionals seeking to implement more responsible recommendation technologies.

From "Data Skeptic"

Listen on your iPhone

Download our iOS app and listen to interviews anywhere. Enjoy all of the listener functions in one slick package. Why not give it a try?

App Store Logo
application screenshot

Popular categories