Grokking, Generalization Collapse, and the Dynamics of Training Deep Neural Networks with Charles Martin

05 Jun 2025 • 85 min • EN
85 min
00:00
01:25:21
No file found

Today, we're joined by Charles Martin, founder of Calculation Consulting, to discuss Weight Watcher, an open-source tool for analyzing and improving Deep Neural Networks (DNNs) based on principles from theoretical physics. We explore the foundations of the Heavy-Tailed Self-Regularization (HTSR) theory that underpins it, which combines random matrix theory and renormalization group ideas to uncover deep insights about model training dynamics. Charles walks us through WeightWatcher’s ability to detect three distinct learning phases—underfitting, grokking, and generalization collapse—and how its signature “layer quality” metric reveals whether individual layers are underfit, overfit, or optimally tuned. Additionally, we dig into the complexities involved in fine-tuning models, the surprising correlation between model optimality and hallucination, the often-underestimated challenges of search relevance, and their implications for RAG. Finally, Charles shares his insights into real-world applications of generative AI and his lessons learned from working in the field. The complete show notes for this episode can be found at https://twimlai.com/go/734.

From "The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)"

Listen on your iPhone

Download our iOS app and listen to interviews anywhere. Enjoy all of the listener functions in one slick package. Why not give it a try?

App Store Logo
application screenshot

Popular categories