How AI Happens
How AI Happens is a podcast featuring experts and practitioners explaining their work at the cutting edge of Artificial Intelligence. Tune in to hear AI Researchers, Data Scientists, ML Engineers, and the leaders of today’s most exciting AI companies explain the newest and most challenging facets of their field. Powered by Sama.
Show episodes
Pascal & Yannick delve into the kind of human involvement SAM-2 needs before discussing the use cases it enables. Hear all about the importance of having realistic expectations of AI, what the cost of SAM-2 looks like, and the the importance of humans in LLMs. Key Points From This Episode:Introducing Pascal Jauffret an
Today we are joined by Siddhika Nevrekar, an experienced product leader passionate about solving complex problems in ML by bringing people and products together in an environment of trust. We unpack the state of free computing, the challenges of training AI models for edge, what Siddhika hopes to achieve in her role
Today we are joined by Developer Advocate at Block, Rizel Scarlett, who is here to explain how to bridge the gap between the technical and non-technical aspects of a business. We also learn about AI hallucinations and how Rizel and Block approach this particular pain point, the burdens of responsibility of AI users, wh
Key Points From This Episode:Drew and his co-founders’ background working together at RJ Metrics.The lack of existing data solutions for Amazon Redshift and how they started dbt Labs.Initial adoption of dbt Labs and why it was so well-received from the very beginning.The concept of a semantic layer and how dbt Labs use
In this episode, you’ll hear about Meeri's incredible career, insights from the recent AI Pact conference she attended, her company's involvement, and how we can articulate the reality of holding companies accountable to AI governance practices. We discuss how to know if you have an AI problem, what makes third-party g
In this episode, Dr. Zoldi offers insight into the transformative potential of blockchain for ensuring transparency in AI development, the critical need for explainability over mere predictive power, and how FICO maintains trust in its AI systems through rigorous model development standards. We also delve into the esse